

АВТОРЫ: БОЛОТИН В.А.,ОАО «МРСК Урала», г. Екатеринбург, Россия, **д.т.н. Челазнов А.А.,**АО «ОЭК», г. Москва, Россия, **к.т.н. Ширковец А.И.,**

ООО «Болид», г. Новосибирск, Россия.

ОБЕСПЕЧЕНИЕ ЭЛЕКТРОБЕЗОПАСНОСТИ ПРИ КОМБИНИРОВАННОМ И РЕЗИСТИВНОМ ЗАЗЕМЛЕНИИ НЕЙТРАЛИ В КАБЕЛЬНОЙ СЕТИ 10 КВ

Аннотация: проанализированы вопросы обеспечения электробезопасности при переводе кабельных сетей 10 кВ с изолированной или компенсированной нейтралью на комбинированный или резистивный режим заземления нейтрали. Решение задачи для распределительной городской сети обосновано с двух позиций: нормирование сопротивления заземляющего устройства (ЗУ) и обеспечение допустимого напряжения прикосновения. Переход на комбинированное заземление нейтрали не приводит к повышению опасных напряжений на контуре ЗУ. Если выполняется перевод сети на низкоомное резистивное заземление нейтрали, напряжение прикосновения не превышает нормируемые ГОСТ 50571.4.44-2019 значения при отключении ОЗЗ за время не более 0,7 с при токах резистора до 500 А.

Ключевые слова: электробезопасность, кабельная сеть, комбинированное и резистивное заземление нейтрали, напряжение на заземляющем устройстве.

Болотин Владимир Анатольевич

Дата рождения: 02.03.1975. В 1997 г. окончил Челябинский государственный технический университет по специальности «Автоматическое управление электроэнергетическими системами». В 2010 г. окончил Южно-Уральский государственный университет, Міпі — МВА/РКАСТІСЕ по специальности «Менеджмент организации». Генеральный директор ОАО «МРСК Урала».

Введение

Режим заземления нейтрали в значительной мере определяет надежность эксплуатации оборудования сетей среднего напряжения при однофазных замыканиях на землю (ОЗЗ), составляющих подавляющее большинство повреждений в распределительных сетях.

Для сетей с изолированной нейтралью или компенсацией емкостного тока допускается длительное существование режима ОЗЗ. В этом случае для обеспечения электробезопасности нормируются параметры ЗУ, к которым применяются требования по значению сопротивления ЗУ, установленные ПУЭ в п. 1.7.96 [1], либо нормируются предельные величины напряжения прикосновения, установленные п. 1.3 ГОСТ 12.1.038-82 [2].

Включение резисторов в нейтраль сети 10 кВ позволяет обеспечить эффективную защиту от перенапряжений и осуществить селективное выявление, а при технической возможности — оперативное отключение поврежденного присоединения с замыканием на землю. С учетом задач, поставленных перед энергоснабжающими организациями, в части повышения надежности,

эффективности и безопасности распределительной сети особую важность приобретают вопросы обеспечения электробезопасности при внедрении резистивного или комбинированного заземления нейтрали, включая переход на отключаемый режим ОЗЗ.

Обеспечение электробезопасности при внедрении комбинированного заземления нейтрали

Применение резистивного и комбинированного заземления нейтрали позволяет снизить уровни дуговых перенапряжений и, в зависимости от функционала применяемой релейной защиты (РЗ), осуществить селективное определение аварийного присоединения. В электрических сетях с кабелями с изоляцией из сшитого полиэтилена (СПЭ) режим резистивного заземления нейтрали позволяет уменьшить время воздействия опасных перенапряжений и увеличить срок эксплуатации линий.

В настоящее время вопросы электробезопасности сетей с изолированной и резистивно заземленной нейтралью регламентируются в ПУЭ [1], ГОСТ 12.1.038-82 [2] и ГОСТ Р 50571.4.44-2019 [3]. В табл. 1 приведены требования указанных документов к допустимым значениям сопротивления ЗУ и напряжения прикосновения.

В ряде случаев полное выполнение требований этих документов для сетей с низкоомным резистивным заземлением нейтрали вызывает затруднения ввиду относительно больших токов от резистора. В случае невозможности выполнения ЗУ по нормам на допустимое сопротивление ЗУ, осуществляются защитные мероприятия на основе системы нормирования условий электробезопасности по допустимому напряжению прикосновения п. 1.7.88 [1]. В этом случае электробезопасность обеспечивается за счет быстрого отключения поврежденной линии, что позволяет в соответствии с ГОСТ 12.1.038-82 [3] принимать повышенные значения напряжения прикосновения по сравнению с напряжением при длительном его воздействии.

Нормирование напряжения прикосновения $U_{\mathrm{пр}}$ является более универсальным

Требования ПУЭ к электробезопасности

Таблица 1. Требования нормативных документов

Эффективно заземленная нейтраль	Изолированная нейтраль			
ПУЭ, п. 1.7.90 Сопротивление заземляющего устройства $R_{\rm 3y} \le 0.5$ Ома	ПУЭ, п. 1.7.96 Сопротивление заземляющего устройства $R_{\rm sy} \le 250 \ / \ I$ $R_{\rm 3y} \le 4$ Ома			
Требования ГОСТ 12.1.038-8	32 к электробезопасности			
Эффективно заземленная нейтраль	Изолированная нейтраль			
ГОСТ 12.1.038-82, п. 1.3 Напряжение прикосновения $U_{\rm np} \le 85~{\rm B} - 0.7~{\rm c}$ $U_{\rm np} \le 340~{\rm B} - 0.1~{\rm c}$ $U_{\rm np} \le 550~{\rm B} - 0.01~{\rm c}$	ГОСТ 12.1.038-82, п. 1.3 Напряжение прикосновения $U_{\rm np} \le 20$ в - сыше 1.0 с $U_{\rm np} \le 105$ В - 0.5с $U_{\rm np} \le 160$ В - 0.2c			
Требования ГОСТ Р 50571.4.44-2019 (МЭК 60364-4-44:2007) к электробезопасности				
Эффективно заземленная нейтраль	Изолированная нейтраль			
ГОСТ Р 50571-4-44-2019, п. 1.3 Напряжение повреждения $U_{\mathrm{nosp}} \le$ 120 В при 1,0 с $U_{\mathrm{nosp}} \le$ 200 В при 0,5 с $U_{\mathrm{nosp}} \le$ 550 В при 0,2 с	ГОСТ Р 50571-4-44-2019, п. 1.3 Напряжение повреждения $U_{\rm nosp} \le 80$ В при 10,0 с $U_{\rm nosp} \le 100$ В при 2,0 с $U_{\rm nosp} \le 120$ В при 1,0 с			

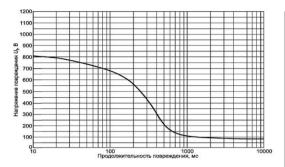


Рис. 1. Зависимость допустимого напряжения повреждения в сети до 1 кВ от максимальной длительности замыкания на землю в сети выше 1 кВ

условием, по сравнению с нормированием сопротивления 3У, и может выполняться как для сетей с изолированной нейтралью, так и для сетей с глухозаземленной нейтралью п. 1.3, табл. 2, 3 [2]. Применимость нормирования по значению $U_{\rm пр}$ обусловлена тем, что ОЗЗ в сети с низкоомным резистором рассматривается как аварийный режим и отключается с минимальными выдержками времени.

Важным вопросом обеспечения электробезопасности для распределительной сети мегаполиса является вопрос о возможном выносе потенциала на корпуса электрооборудования РП (РТП) и ТП 6-10/0,4 кВ в сети 0,4 кВ. В ГОСТ Р 50571.4.44-2019 [6] приведена зависимость допустимого напряжения повреждения в сети низкого напряжения $U_{\text{повр}}$ при ОЗЗ в сети более высоких классов напряжений ТП (РТП) от продолжительности существования замыкания, т.е. времени его отключения $t_{\text{откл}}$ (рис. 1).

Согласно рис. 1, при $t_{\text{откл}} \geq 10$ с предельно допустимым является $U_{\text{пов}} = 80$ В. Для оценки условий электробезопасности в конкретной сети 10 кВ следует выполнять специальные расчеты растекания тока с учетом дополнительной металлосвязи всех РП (РТП) и ТП с 3У центров питания 110-220/10 кВ. Эта металлосвязь обеспечивается посредством медных экранов СПЭкабелей, а также свинцовых или алюминиевых оболочек кабелей с пропитанной изоляцией.

Определение значений напряжений на 3У и оценка напряжения прикосновения в разных точках кабельной сети (на питающей подстанции (ПС), а также РП и ТП прилегающей сети) выполнены в программной среде МАЭС [7]. Программа МАЭС предна-

Челазнов Александр Алексеевич

Дата рождения: 10.06.1952. В 1974 г. окончил электроэнергетический факультет
Новосибирского электротехнического института (НЭТИ). В 2000 г. в НЭТИ защитил
докторскую диссертацию
«Статистические основы
эксплуатационной надежности выключателей в режиме
отключения токов короткого
замыкания».

Старший научный сотрудник. Руководитель проекта АО «Объединенная энергетическая компания».

Ширковец Андрей Игоревич

Дата рождения: 06.09.1983. В 2006 г. окончил факультет энергетики Новосибирского государственного технического университета (НГТУ). В 2013 г. в НГТУ защитил кандидатскую диссертацию «Исследование и моделирование электромагнитных процессов при замыканиях на землю в кабельных сетях с неэффективным заземлением нейтрали».

Начальник отдела международных отношений и инжиниринга OOO «Болид».

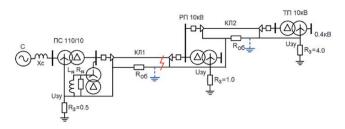


Рис. 2. Расчетная схема участка сети

значена для расчета электромагнитных переходных процессов в электроэнергетических схемах произвольной сложности и конфигурации и включает в себя математические модели всех основных элементов электрической системы: трехфазные генераторы, многопроводные линии, трансформаторы, выключатели и др. Программа позволяет рассчитывать переходные процессы при возникновении коротких замыканий (КЗ) и отключений линий, рассчитывать коммутационные перенапряжения, переходные токи КЗ, режимы дуговых ОЗЗ.

Расчеты проводились на примере сети 10 кВ ПС 110/10 кВ «Ясная» Екатеринбургской электросетевой компании. В расчетной модели КЛ представлены частотно-независимыми линиями с распределенными параметрами, где используются геометрические параметры кабеля и электрические характеристики конструктивных материалов. Трансформаторы на ПС 110/10 и на ТП 10/0,4 моделировались с учетом группы соединения обмоток с выведенной нейтральной точкой, подключаемой к 3У непосредственно или через резистор.

В общем случае городская кабельная сеть имеет развитую структуру, содержащую питающую ПС 110-220/10 кВ, от шин 10 кВ которой запитываются распределительные пункты (РП). От разных секций РП осуществляется питание ПС потребителей ТП по радиальной двухлучевой схеме. К одной секции шин ПС подходит от 2 до 8 кабельных линий.

Для анализа в сложной разветвленной сети выделяется радиальный участок, расчетная схема которого представлена на рис. 2. Рассматривается два типа участков сети:

- От ПС «Ясная» кабелем АСБ-10-(3х240) запитан РП, от которого кабелем АСБл-10-(3х120) получает питание ТП.
- От ПС «Ясная» кабелем АПвПуг-10-3(1х400/70) запитан РП от которого кабелем АПвП-10-3(1х240/50) получает питание ТП.

Условия обеспечения электробезопасности в эксплуатируемой сети с подключенными дугогасящими реакторами

На ПС «Ясная» на 1-4 СШ 10кВ установлены реакторы типа РДМР-610/10У1 (диапазон регулирования то-

ков 5-100 А при напряжении 11 кВ), подключенные к шинам 10 кВ через ФМ30-875/11 УХЛ1.

Максимальные расчетные значения тока ОЗЗ на 1-4 секциях шин приведены в табл. 2.

Таблица 2. Расчетные значения тока ОЗЗ на 1-4 секциях шин

1	СШ	2СШ	зсш	4СШ	Суммарный ток ОЗЗ
3	4,73	36,27	25,93	27,96	124,9

При вводе в эксплуатацию кабелей с изоляцией СПЭ с медными экранами сечением 50-70 мм² улучшается электрическая связь ЗУ, удаленных от питающего центра, при этом необходима проверка напряжений на контурах заземления для ПС и подключенных ТП.

Рассмотрим случаи питания подключенных к питающей ПС РП и ТП через кабели с бумажно-масляной изоляцией и изоляцией СПЭ.

Таблица 3. Напряжения на 3У при питании РП 411 по КЛ с бумажномасляной изоляцией, РП 432 КЛ с СПЭ изоляцией, в нейтрали питающей ПС включен ДГР

включен дл г						
Место ОЗЗ, режим нейтрали ДГР	$U_{ m 3y}$ nc,B/ $I_{ m 3y}$ A	<i>U</i> _{зу} ртп,В/ <i>I</i> _{зу} , А	<i>U</i> _{зу} тп,В/ <i>I</i> _{зу} , А	$U_{ m 3y}$ nc,B/ $I_{ m 3y}$ A	<i>U</i> _{зу} ртп,В/ <i>I</i> _{зу} , А	$U_{ m 3y}$ тп,В/ $I_{ m 3y}$, А
	КЛ с бумажно-масля- ной изоляцией		КЛ со СПЭ изоляцией			
Середина КЛ1, в нейтрали ПС ДГР отключен, ОЗ на экран	1,9	2,4	1,8	1,46	4,1	3,6
Середина КЛ1, в нейтрали ПС ДГР 35A, О3 на экран	0,91	0,50	0,53	0,71	0,95	1,03
Начало КЛ1, в нейтрали ПС ДГР 35A, ОЗ на контур (экран)	0,75	0,75	0,38	0,55	0,60	0,70
Конец КЛ1, в нейтрали ПС ДГР 35А, ОЗ на контур (экран)	1,0	0,78	0,60	0,86	1,30	1,35
Конец КЛ2, в нейтрали ПС ДГР 35A, О3 на контур ТП (экран)	1,1	0,72	1,40	0,86	1,20	2,03
Начало КЛ1, в нейтрали ПС ДГР 35А, ОЗ на экран, экран аварийной КЛ не связан с ЗУ	2,1	1,7	1,5	2,6	5,2	5,0
Начало КЛ1, ДГР отключен, ОЗ на экран КЛ1, экран аварийной КЛ1 не связан с ЗУ	7,0	7,6	6,0	9,4	23	21
Конец КЛ2 ДГР отключен, ОЗ на экран КЛ2, экран аварийной КЛ2 не связан с ЗУ2	3,7	5,9	0,004	3,0	10,0	0,09

При моделировании кабеля с бумажно-масляной изоляцией учитывается электрический контакт оболочки и брони с потенциалом земли. В этом случае любое замыкание жилы кабеля на общую защитную свинцовую оболочку будет одновременным замыканием на землю. Повышенное сопротивление свинцовой оболочки приводит к увеличению доли тока, вытесняемого в землю и протекающего через контуры ЗУ.

В табл. 3 приведены результаты расчетов режимов ОЗЗ в сети 10 кВ с подключенным к нейтрали ДГР на ПС 110/10 кВ. Расчетный ток ОЗЗ составляет ЗЗ А, ток ДГР 35 А.

В нормальном режиме компенсации ток замыкания на землю и ток ДГР замыкаются через оболочки (экраны) кабелей и проводники ЗУ. Непосредственно через контур заземления протекает ток небаланса, являющийся незначительной частью тока ОЗЗ. За счет малой его величины на ЗУ напряжения не превышают 1-2 В.

Повышение напряжения на ЗУ наблюдаются при замыкании одной жилы кабеля на экран КЛ и изолированном от ЗУ экране кабеля. Напряжение на ЗУ2 при токе ДГР 35 А достигает 5,2 В (строка 6 табл. 3). Наибольшие значения напряжения на ЗУ наблюдаются при замыкании одной жилы кабеля на экран КЛ, изолированном от ЗУ экране кабеля в режиме отключенного ДГР. В этом случае ток ОЗЗ разделяется по ЗУ ПС и ЗУ ТП, напряжение на каждом ЗУ определяется как

$$U_{\scriptscriptstyle 3y} = I_{\scriptscriptstyle 033} \cdot R_{\scriptscriptstyle 3y}$$
 .

Напряжение на 3У при токе ДГР 35 А достигает 23 В (строка 7, табл. 3).

Уровни напряжений на ЗУ при использовании кабелей с БМИ в среднем в два раза ниже соответствующих значений для кабелей с изоляцией СПЭ. Заземление экрана кабеля АСБ по длине играет роль дополнительного контура заземления, подключенного к контуру ЗУ. Однако этот фактор не имеет существенного влияния на уровень электробезопасности, поскольку общий уровень напряжения на ЗУ намного ниже значений, нормируемых ГОСТ Р 50571.4.44 - 2019.

В рассматриваемой сети, оснащенной реактором РДМР-610/10У1, при развитии сети с возрастанием тока ОЗЗ до значения 100 А напряжение на контуре ЗУ не превысит 69 В в самом тяжелом случае, что не превышает значения 80 В, нормируемого ГОСТ Р 50571.4.44-2019.

Расчетная оценка напряжения прикосновения в городской сети 10 кВ при комбинированном заземлении нейтрали

Комбинированное заземление нейтрали позволяет:

• решить проблемы перенапряжений при дуговых однофазных замыканиях на землю, сокращая тем самым повреждения изоляции высоковольтного оборудования;

Таблица 4. Напряжения на 3У при комбинированном заземлении нейтрали

Место ОЗЗ, режим нейтрали ДГР	<i>U</i> _{зу} пс,В/ <i>I</i> _{зу} , А	U_{3y} ртп,В/ I_{3y} А	$U_{ m 3y}$ тп,В/ $I_{ m 3y}$ А	<i>U</i> _{зу} пс,В/ <i>I</i> _{зу} , А	U_{3y} ртп,В/ I_{3y} , А	$U_{ m 3y}$ тп,В/ $I_{ m 3y}$ А
	Комбинированное заземление		ДГР без резистора			
Середина КЛ1, в нейтрали ПС ДГР 35A, О3 на экран	0,68	1,18	1,20	0,71	0,95	1,03
Начало КЛ1, в нейтрали ПС ДГР 35А, О3 на контур (экран)	0,55	0,61	0,71	0,55	0,60	0,70
Конец КЛ1, в нейтрали ПС ДГР 35А, О3 на контур (экран)	0,93	1,9	1,8	0,86	1,3	1,35
Конец КЛ2, в нейтрали ПС ДГР 35А, ОЗ на контур ТП (экран)	0,97	1,7	3,1	0,86	1,2	2,03
Начало КЛ1, в нейтрали ПС ДГР 35А, ОЗ на экран, экран аварийной КЛ не связан с ЗУ	3,0 13%	6,5 20%	6,2 19%	2,6	5,2	5,0

- создать условия для быстрого и надежного определения поврежденного фидера устройствами релейной защиты и автоматики:
- снизить напряжение смещения нейтрали в сети с резонансной настройкой ДГР ниже нормируемой величины.

Положительный эффект от комбинированного заземления нейтрали достигается при токе резистора порядка 10 % номинального тока ДГР.

В табл. 4 приведены результаты расчета режимов однофазного замыкания в сети 10 кВ с подключенными к нейтрали ДГР и силовыми резисторами (ток ДГР 35 А, ток резистора 3,6 А, емкостный ток сети 33 А, кабели с изоляцией СПЭ).

В наиболее тяжелых режимах ОЗЗ, не связанных с отключением ДГР, возрастание напряжения на ЗУ за счет параллельного подключения резистора не превышает 20 % и не приводит к предельно допустимым значениям напряжения прикосновения согласно требованиям ГОСТ 12.1.038-82.

Расчетная оценка напряжения на 3У сети 10 кВ с низкоомным резистором

Низкоомное заземление нейтрали позволяет уменьшить уровни дуговых перенапряжений и обеспечить быстрое селективное отключение ОЗЗ, уменьшив тем самым продолжительность опасного воздействия перенапряжений и токов на изоляцию и экраны кабелей СПЭ. В то же время протекание больших токов заземляющего резистора может вызвать появление высокого потенциала на ЗУ питающей и приемной ПС и его выноса в низковольтную сеть [4].

Таблица 5. Результаты расчета напряжений на 3У при низкоомном заземлении нейтрали

susemmentuu meumpumu						
I_R , A	$U_{ m 3y}$ ПС, В	$U_{ m 3y}$ РП, В	$U_{ m 3y}$ ТП, В			
О33 в начале КЛ1						
100	0.67	0,57	0,71			
200	0.56	0.61	0.71			
300	0.56	0.61	0.71			
400	0.56	0.61	0.71			
500	0.56	0.61	0.71			
500, БМИ	0.74	0.32	0.38			
	C	33 в конце КЛ1				
100	13	30	28			
200	24	57	53			
300	34	82	76			
400	45	106	99			
500	46	128	119			
500, БМИ	56	97	78			
О33 в конце КЛ2						
100	13	26	55			
200	26	50	104			
300	37	71	149			
400	47	91	190			
500	57	110	230			
500, БМИ	60	69	176			

Таблица 6. Результаты расчета напряжений на 3У при низкоомном заземлении нейтрали при четырех подключенных КЛ

I_R , A	$U_{ m 3y}$ ПС, В	$U_{ m 3y}$ РП, В	$U_{ m 3V}$ ТП, В			
ОЗЗ в начале КЛ1						
100	0.9	0.23	0.27			
200	0.9	0.23	0.27			
300	0.9	0.23	0.27			
400	0.9	0.24	0.28			
500	0.9	0.23	0.29			
500, БМИ	0.9	0.17	0.2			
	C	33 в конце КЛ1				
100	3.7	23	17			
200	7.3	43	31			
300	11	62	45			
400	14	81	59			
500	17	97	71			
500, БМИ	19	81	52			
О33 в конце КЛ2						
100	4.3	16	36			
200	8.5	30	68			
300	12	43	98			
400	16	55	126			
500	19	65	150			
500 БМИ	20	47	128			

Для исследуемого участка сети 10 кВ смоделирован режим низкоомного резистивного заземления нейтрали с активным током резистора в диапазоне

$$I_R = 100 - 500 \text{ A},$$

что соответствует сопротивлению резистора $R=57-11,6~{\rm Om}.$

Суммарный емкостный ток рассматриваемой секции шин составляет $I_{\rm C}=33$ А. Расчетная схема участка сети с моделированием экранов кабелей представлена на рис. 3.

Замыкание на землю моделировалось замыканием жилы кабеля на экран. Результаты расчета напряжений на заземляющих устройствах $U_{\rm 3y}$ при ОЗЗ вблизи шин ПС, на РП и ТП представлены в табл. 5. Показаны значения напряжений на контуре ЗУ для самого тяжелого

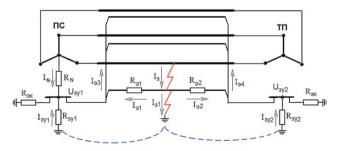


Рис. 3. Расчетная схема участка сети 10 кВ

случая, когда к ТП подходит только одна КЛ, на которой происходит ОЗЗ.

Анализ полученных расчетных значений напряжения на ЗУ в рассматриваемой кабельной сети 10 кВ показал, что в наиболее опасном случае на ОЗЗ вблизи ТП 40521 максимальные напряжения на ЗУ достигают 57–230 В. Напряжение на ЗУ определяется долей тока резистора, который распределяется по подключенным к ЗУ экранам кабелей и по контуру заземления. При одной подходящей КЛ ток ОЗЗ делится между экраном кабеля и сопротивлением контура ЗУ, пропуская в контур значительную долю тока. При увеличении числа подключенных к ЗУ КЛ доля тока в ЗУ уменьшается и напряжение на ЗУ снижается.

В табл. 6 показаны значения напряжений на контуре 3У для типовой конфигурации ТП, когда к ТП подходит две КЛ и две КЛ отходят.

При подключении к шинам 10 кВ ТП четырех КЛ максимальные напряжения на ЗУ ТП 40521 при токе резистора I_R = 500 A достигают $U_{\rm 3y}$ = 150 В. Для этих величин напряжений допустимое время отключения замыкания по нормам ГОСТ Р 50571.4.44-2019 составляет 0,7 с.

Напряжение на ЗУ всегда больше напряжения прикосновения, поскольку последнее зависит от того, в какой именно точке произошло касание к заземляемым частям электроустановки. Поэтому применение понятия «напряжение повреждения», описывающего опас-

ность замыкания в высоковольтной сети для человека, вполне оправдано. К сожалению, в принятых стандартах ГОСТ 12.1.038-82 и ГОСТ Р 50571.4.44-2019 имеются разночтения, обусловливающие сложность их совместного анализа и применения в разных условиях.

Выводы

- 1. В кабельных сетях 6-10 кВ мегаполиса по условиям надежности и безопасности оптимальным решением является переход на режим низкоомного резистивного заземления нейтрали, обеспечивающий быстрое и селективное отключение участка сети с однофазным повреждением. Это позволяет снизить вероятность попадания под напряжение и длительность воздействия тока промышленной частоты на человека при его прикосновении к заземленным частям электроустановки в режиме ОЗЗ.
- 2. Подключение резистора параллельно дугогасящему реактору при использовании комбинированного заземления нейтрали обусловливает повышение напряжения на 3У не более чем на 20% и не приводит к предельно допустимым значениям согласно требованиям ГОСТ 12.1.038-82.
- 3. Проведена оценка напряжения на контуре заземления на участке городской кабельной сети 10 кВ с низкоомными резисторами в диапазоне активного тока 100–500 А. Наибольшее расчетное значение напряжения на 3У при ОЗЗ на самой удаленной ТП при токе ре-

зистора 500 А не превышает 150 В, что допускает отключение повреждения за время не более 0,7 с по ГОСТ Р 50571.4.44 – 2019. Учитывая, что выдержки времени защит на «нижнем уровне» РП/ТП, оснащенных силовыми выключателями, по карте селективности минимальны и составляют обычно 0,2-0,5 с, для городской кабельной сети 6-10 кВ технически приемлемо использовать резисторы с токами до 500 А.

4. Действующие ГОСТ 12.1.038-82 и ГОСТ Р 50571.4.44 - 2019 (МЭК 60364-4-44:2007) слабо согласуются между собой и регламентируют разные понятия и различные значения напряжения и времени его воздействия при оценке опасности для человека при повреждении в высоковольтной сети.

Литература:

- 1. Правила устройства электроустановок 7-е издание. Утверждены приказом Минэнерго РФ от 30.06.2003 г. №264.
- 2. ГОСТ 12.1.038-82 Система стандартов безопасности труда (ССБТ). Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов.
- 3. ГОСТ Р 50571.4.44-2019 (МЭК 60364-4-44:2007) Электроустановки низковольтные. Часть 4.44. Защита для обеспечения безопасности. Защита от резких отклонений напряжения и электромагнитных возмущений.
- 4. Наумкин И.Е., Челазнов А.А. Интерактивная система для численного моделирования сложных электроэнергетических схем // Режимы заземления нейтралей сетей 3-6-10-35 кВ / Доклады научно-технической конференции. Новосибирск: ГЦРО, 2000. 200 с.
- 5. Фишман В.С. Кабельные сети 6(10) кВ со СПЭ изоляцией. Возникновение и распространение опасных потенциалов //Новости ЭлектроТехники. 2013. N° 5 (83).

