IV Всероссийская научно-практическая конференция «Режимы нейтрали. Ограничение перенапряжений. Релейная защита и автоматика. 2025»

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ИЗОЛЯЦИИ И ТОКОВ ЗАМЫКАНИЯ НА ЗЕМЛЮ КАРЬЕРНОЙ СЕТИ МЕТОДОМ ДОБАВОЧНОЙ ПРОВОДИМОСТИ С УЧЕТОМ НЕСИММЕТРИИ ФАЗНЫХ НАПРЯЖЕНИЙ

Иноземцев Максим Александрович старший преподаватель Филиал КузГТУ в г. Прокопьевске

Новосибирск, 2025 г.

Введение

Актуальность

Статистика повреждений кабельных линий 6 – 10 кВ:

- 65 85% однофазные повреждения;
- 25 75% повреждений кабелей связано с износом или снижением уровня изоляции;
 - Большая часть повреждений приходится на весенний и осенний период;

Состояние изоляции определяет безопасность эксплуатации и надежность электроснабжения.

Непрерывный контроль состояния изоляции кабельных линий, и определение ее параметров при проведении открытых и подземных горных работ является актуальной задачей.

Цель и задачи работы

Цель: обосновать возможность использования метода добавочной проводимости при несимметрии напряжений сети.

Задачи:

- 1) Рассмотреть физические процессы в изоляции кабеля;
- 2) Рассмотреть метод добавочной проводимости;
- 3) Выполнить анализ погрешностей расчета параметров изоляции и тока ОЗЗ при несимметрии напряжений;
- 4) Предложить способ учета несимметрии фазных напряжений и выполнить оценку точности предложенного способа;
- 5) Предложить структурную схему устройства автоматического измерения параметров изоляции.

Модель двухслойной изоляции

Схема замещения

Процессы в изоляции могут быть описаны с помощью активного сопротивления и емкости

 $r = \frac{R_1 R_2 (R_1 + R_2) (C_1 + C_2)^2}{(R_1 C_1 - R_2 C_2)^2}$

$$\Delta C_{\text{aff}} = \frac{\left(R_1 C_1 - R_2 C_2\right)^2}{\left(R_1 + R_2\right)^2 \left(C_1 + C_2\right)}$$

Процессы в изоляции при постоянном напряжении

$$u_{1} = E\left(1 - \frac{C_{1}}{C_{1} + C_{2}}\right)e^{-\frac{t}{\tau}} \qquad u_{2} = E\frac{C_{1}}{C_{1} + C_{2}}e^{-\frac{t}{\tau}}$$
$$Q(0_{+}) = Q_{1}(0_{+}) = Q_{2}(0_{+}) = \frac{C_{1}C_{2}}{C_{1} + C_{2}}E \qquad Q(\infty) = Q_{1}(\infty) = EC_{1}$$

$$Q(\infty) > Q(0_{+})$$
 $Q_{abc} = E \frac{C_{1}^{2}}{C_{1} + C_{2}}$

Схема замещения двухслойной изоляции (по Е.Ф. Цапенко)

*i*_r – ток проводимости; *i*_C – ток смещения.

– В неоднородном диэлектрике при его включении на постоянное напряжение появляется ток абсорбции.

 При увеличении проводимости ток абсорбции возрастает, а его продолжительность уменьшается.

- В установившемся режиме проходит только ток проводимости.

Процессы в изоляции при переменном напряжении

Плотность тока через изоляцию

$$\vec{\delta} = \sigma \vec{E} + \varepsilon \frac{dE}{dt}$$

Комплексный ток через изоляцию

 $g_0 = \frac{\omega^2 C_1 r_2}{1 + \omega^2 (C_1 + C_1)^2 r^2}$

 $\dot{I} = U(g_0 + j\omega C)$

Эквивалентная активная проводимость реальной изоляции

 $C_0 = C_1 \frac{1 + \omega^2 C_2 (C_1 + C_2) r_2^2}{1 + \omega^2 (C_1 + C_2) r_2^2}$ Эквивалентная емкость реальной изоляции

 $tg\delta = \frac{g_0}{\omega C_0} = \frac{\omega C_1 r_2}{1 + \omega^2 C_2 (C_1 + C_2) r_2^2}$ Угол диэлектрических потерь

Проводимость изоляции переменному току отличается от проводимости изоляции постоянному току.

Схема замещения изоляции трехфазной сети

Полные комплексные проводимости изоляции:

$$\underline{Y}_{A} = \frac{1}{r_{A}} + j\omega C_{A} \qquad \underline{Y}_{B} = \frac{1}{r_{B}} + j\omega C_{B} \qquad \underline{Y}_{C} = \frac{1}{r_{C}} + j\omega C_{C}$$

Параметры изоляции могут быть определены из схемы замещения трехфазной сети.

$$\dot{U}_{N} = \frac{\dot{U}_{\phi A} \underline{Y}_{A} + \dot{U}_{\phi B} \underline{Y}_{B} + \dot{U}_{\phi C} \underline{Y}_{C}}{\underline{Y}_{A} + \underline{Y}_{B} + \underline{Y}_{C}}$$

Допущения:

 Параметры сети относительно земли являются сосредоточенными;

 Активные и индуктивные сопротивления фазных проводников, трансформатора и цепей заземления равны нулю;

– Междуфазные емкости не учитываются.

Использование значений параметров изоляции сети

а) Расчет токов утечки в фазах сети:

$$\dot{I}_{yA} = U_{\phi} \frac{\underline{Y}_{\Sigma} - \underline{Y}_{S}}{\underline{Y}_{\Sigma}} \underline{Y}_{A} \qquad \dot{I}_{yB} = U_{\phi} \frac{a^{2} \underline{Y}_{\Sigma} - \underline{Y}_{S}}{\underline{Y}_{\Sigma}} \underline{Y}_{B} \qquad \dot{I}_{yC} = U_{\phi} \frac{a \underline{Y}_{\Sigma} - \underline{Y}_{S}}{\underline{Y}_{\Sigma}} \underline{Y}_{C}$$

где $\underline{Y}_{S} = \underline{Y}_{A} + a^{2}\underline{Y}_{B} + a\underline{Y}_{C}$

б) Расчет токов замыкания на землю отдельных фаз:

в) Расчет напряжений прикосновения;

г) Для настройки систем компенсации емкостного тока, оценки величин перенапряжений, и т.д.

Метод добавочной проводимости (МДП)

Расчет параметров изоляции сети, токов утечки и токов ОЗЗ

На основании схемы замещения:

а) параметры изоляции сети относительно земли:

$$\underline{Y}_{\Sigma} = \frac{\dot{U}_{i}'\underline{Y}_{\mathcal{A}}}{\dot{U}_{i} - \dot{U}_{i}'} \qquad r_{\Sigma} = \operatorname{Re}(Y_{\Sigma}) = \operatorname{Re}\left(\frac{\dot{U}_{i}'\underline{Y}_{\mathcal{A}}}{\dot{U}_{i} - \dot{U}_{i}'}\right) \qquad C_{\Sigma} = \frac{1}{\omega}\operatorname{Im}(Y_{\Sigma}) = \frac{1}{\omega}\operatorname{Im}\left(\frac{\dot{U}_{i}'\underline{Y}_{\mathcal{A}}}{\dot{U}_{i} - \dot{U}_{i}'}\right)$$

б) параметры изоляции отдельных фаз относительно земли:

$$\begin{cases} \dot{U}_{A}\underline{Y}_{A} + \dot{U}_{B}\underline{Y}_{B} + \dot{U}_{C}\underline{Y}_{C} = 0\\ \dot{U}_{A}'\underline{Y}_{A} + \dot{U}_{B}'\underline{Y}_{B} + \dot{U}_{C}'\underline{Y}_{C} = -j\omega C_{A}\dot{U}_{A}' \end{cases}$$

$$\begin{cases} \dot{U}_{A}\underline{Y}_{A} + \dot{U}_{B}\underline{Y}_{B} + \dot{U}_{C}\underline{Y}_{C} = 0\\ \dot{U}_{A}'\underline{Y}_{A} + \dot{U}_{B}'\underline{Y}_{B} + \dot{U}_{C}'\underline{Y}_{C} = -j\omega C_{\mathcal{A}}\dot{U}_{A}'\\ \dot{U}_{B}''\underline{Y}_{A} + \dot{U}_{A}''\underline{Y}_{B} + \dot{U}_{C}''\underline{Y}_{C} = 0 \end{cases}$$

в) токи замыкания на землю отдельных фаз:

$$\dot{I}_{3i} = \frac{\dot{U}_i \cdot \dot{U}_i'}{\dot{U}_i - \dot{U}_i'} \underline{Y}_{\Delta}$$

Основные расчётные соотношения МДП

Т. *N* определяется в месте пересечения окружностей радиусами $U_{\rm A}, U_{\rm B}, U_{\rm C}$ с центрами в точках А, В, С.

$\frac{\Phi азные напряжения в комплексной форме}{\dot{U}_A = \frac{2U_A^2 - U_B^2 - U_C^2}{6U_{\phi}} + U_{\phi} + j\frac{U_C^2 - U_B^2}{2\sqrt{3}U_{\phi}}}$	
$\dot{U}_{B} = \frac{2U_{A}^{2} - U_{B}^{2} - U_{C}^{2}}{6U_{\phi}} - \frac{1}{2}U_{\phi} + j\left(\frac{U_{C}^{2} - U_{B}^{2}}{2\sqrt{3}U_{\phi}} - \frac{\sqrt{3}}{2}U_{\phi}\right)$	
$\dot{U}_{C} = \frac{2U_{A}^{2} - U_{B}^{2} - U_{C}^{2}}{6U_{\phi}} - \frac{1}{2}U_{\phi} + j\left(\frac{U_{C}^{2} - U_{B}^{2}}{2\sqrt{3}U_{\phi}} + \frac{\sqrt{3}}{2}U_{\phi}\right)$	
$I_{3i} = \frac{\omega C_{\mathcal{A}} U_i U'_i}{\sqrt{(a_i - a'_i)^2 + (d_i - d'_i)^2}}$ Ток ОЗЗ <i>i</i> -й фазы	
$r_{\Sigma} = rac{(a-a')^2 + (d-d')^2}{\omega C_{_{\partial o ar o}}(da'-d'a)}$ Активное сопротивление сети	
$C_{\Sigma} = rac{C_{\mathcal{A}} \left[a'(a-a') + d'(d-d') ight]}{\left(a-a' ight)^2 + \left(d-d' ight)^2}$ Емкость сети	12

Исследование точности МДП при несимметрии напряжений

Исходные данные: U_A = 3713 B, U_B = 3463 B, U_C = 3239 B.

№ опыта	<i>г</i> _А , кОм	<i>г</i> _В , кОм	<i>г</i> _С , кОм	С _А , мкФ	С _в , мкФ	С _С , мкФ	<i>г</i> _Σ , кОм	<i>С</i> _Σ , мкФ	I _{033 с} , А
1	163	90	132	0,7	0,95	0,6	40,3	2,25	2,84
2	156	80	81	0,5	0,6	0,95	32,0	2,05	1,97
3	110	115	120	0,5	0,9	1,4	38,3	2,8	2,44

По результатам измерений МГИ, приведенным в литературе (авт. Цапенко Е.Ф.)

Определено в процессе имитационного моделирования

Вычислено

аналитически

Имитационная модель в MATLAB Simulink

14

Результаты моделирования

При использовании исходных формул «как есть» без учёта несимметрии напряжений.

№ опыта	I _{ОЗЗ С} , А	<i>г</i> _{Σ выч} , кОм	<i>С</i> _{Σ выч} , мкФ	δ _{ι 033} , %	δ _r , %	δ _C , %
1	<u>2,98</u>	<u>13,6</u>	<u>2,49</u>	5	67	9.6
•	2,84	40,3	2,25	•	07	0,0
2	<u>2,13</u>	<u>10,3</u>	<u>2,36</u>	Q 1	67.8	15 1
	1,97	32,0	2,05	0,1	07,0	15,1
3	<u>2,84</u>	<u>10,5</u>	<u>3,27</u>	16.4	70.6	16.9
	2,44	38,3	2,8	10,4 /2,	12,0	10,8

Вывод: при несимметрии фазных напряжений сети погрешности расчета параметров изоляции и тока ОЗЗ составляют единицы – десятки процентов.

Модификация метода

Для учета возможной несимметрии предлагается дополнительно измерять фазные напряжения сети, и использовать их значения при расчёте комплексных напряжений фаз относительно земли.

Результаты моделирования с доп. измерениями

№ опыта	I _{ОЗЗ С} , А	<i>г</i> _{Σ выч} , кОм	<i>С</i> _{Σ выч} , мкФ	δ _{Ι Ο33} , %	δ _r , %	δ _C , %
1	<u>2,60</u>	<u>41,3</u>	<u>2,25</u>	84	25	0
	2,84	40,3	2,25	0,1	2,0	v
2	<u>1,73</u>	<u>31,4</u>	<u>2,05</u>	10.0	1 0	0
	1,97	32,0	2,05	12,2	1,9	0
3	<u>2,25</u>	<u>37,8</u>	<u>2,8</u>	7.0	1.0	0
	2,44	38,3	2,8	7,8 1,3	٦,3	U

Вывод: при учете несимметрии фазных напряжений сети погрешности расчета параметров изоляции составляют единицы процентов, погрешность расчета тока O33 осталась примерно на том же уровне.

Сравнение погрешностей расчета

	Исходный метод			Модифицированный метод		
№ ОПЫТА	δ _{ι 033} , %	δ _r , %	δ _C , %	δ _{ι 033} , %	δ _r , %	δ _C , %
1	5	67	9,6	8,4	2,5	0
2	8,1	67,8	15,1	12,2	1,9	0
3	16,4	72,6	16,8	7,8	1,3	0

Вывод: учет несимметрии фазных напряжений сети значительно снижает погрешности расчета параметров изоляции, погрешность расчета тока ОЗЗ существенно не изменилась.

- 1 источник вторичного электропитания;
- 2 блок измерения напряжений;
- 3 блок коммутации добавочной проводимости;
- 4 вычислительный модуль;
- 5 модуль ввода-вывода;
- 6 часы реального времени;
- 7 модуль связи.

N1 3 8 N2

A3

33

19

Измерительная схема фазного напряжения

Время установления выходного напряжения ≈ 0,75 с.

Погрешности определения положения вектора <u>U_N</u>

Величина погрешности зависит от точности измерения напряжений фаз относительно земли

Программа расчета параметров трехфазной сети

🖳 Расчет параметров изоляции и токов замыкания на землю	- 🗆 X						
Фазные напряжения, В ИфА 0 ИфВ 0 ИфС 0	Результаты вычислений						
Симметричная система напряжений	Комплексное напряжение смещения нейтрали, В						
Напряжения фаз относительно земли, В	Активное сопротивление сети, кОм						
UA0 0 UB0 UC0 0 U'A0 0 U'B0 U'C0 0 0	Емкость сети, мкФ -						
Добавочная проводимость	Ток замыкания на землю фазы А						
 Емкость Значение 0 Резистор 	Ток замыкания на землю фазы В -						
Напряжение смещения нейтрали, В 0	Ток замыкания на землю фазы С						
Вычислить							

Направления дальнейших исследований

Дальнейшие исследования предполагают разработку и совершенствование:

- методов расчета параметров изоляции отдельных фаз трехфазной сети;
- устройств измерения параметров изоляции в сетях напряжением до 1000 В и выше 1000 В;

 – устройств защиты от токов утечки и ОЗЗ в сетях горнодобывающих предприятий;

 – способа прогнозирования остаточного ресурса изоляции кабельных линий горнодобывающих предприятий;

– программного обеспечения (ПО) для выполнения поставленных задач.

Также на основании разработанных методов, устройств и ПО планируется сбор данных по изоляции электроустановок горнодобывающих предприятий (в процессе взаимодействия с ними);

Спасибо за внимание!

Иноземцев Максим Александрович inozemcevma@kuzstu.ru